Chemical Transformations of Phyllocladane (=13 β -Kaurane) Diterpenoids

by Gui Liu, Ralph Müller, and Peter Rüedi*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Earlier phytochemical work on *Plectranthus ambiguus* (Lamiaceae) afforded a series of tetracyclic phyllocladane-type (=13 β -kaurane) diterpenoids (see **1a-f**). In the course of investigations concerning the reaction behavior of this rare natural-products, a new constituent of *P. ambiguus* was isolated, (2*S*,3*R*,16*R*)-phyllocladane-2,3,16,17-tetrol 2,3-diacetate (**1g**), and another eighteen new phyllocladanes were prepared by chemical transformations and characterized. The main constituent **1b** of *P. ambiguus* was chemically transformed to the known natural diterpenoid calliterpenone (=(16*R*)-16,17-dihydroxyphyllocladan-3-one; **2**) thus unambiguously establishing its structure (*Scheme 1*). Epimerization at C(16) *via* the epoxy derivative **20** yielded 16-epicalliterpenone (**21**), 17-hydroxyphylloclad-15-ene-3-one (**22**), and (16*R*)-3-oxophyllocladan-17-al (**23**) (*Scheme 6*). Comparing this reaction sequence with the corresponding one starting from diastereoisomeric (16*R*)-16,17-dihydroxy-*ent*-kauran-3-one (=abbeokutone; **27**) showed basically the same outcome (*Scheme 7*). Furthermore, three new C(16)-substituted *ent*-kauran-3-ones were characterized.

Reliable spectroscopic arguments for the determination of the configuration at C(16) in phyllocladanes and kauranes as well as for the differentiation of the diastereoisomeric skeletons are presented.

1. Introduction. – In connection with our research program concerning the isolation and synthesis of genuine constituents of African and Asian *Lamiaceae* species of the genera *Coleus*, *Plectranthus*, and *Solenostemon* with respect to antioxidants, inhibitors of the arachidonate metabolism, and allergens [1], we had reported on the isolation and structure elucidation of a series of tetracyclic diterpenoids of the phyllocladane-type (=13 β -kaurane) from *Plectranthus ambiguus*, *i.e.* **1a** – **f** [2].

- **1a** $R^1 = R^3 = H$, $R^2 = OCOMe$
- **b** $R^1 = OCOCH = C(Me)_2$, $R^2 = OCOMe$, $R^3 = H$
- c $R^1 = OCOCH_2C(Me)_2$, $R^2 = OCOMe$, $R^3 = H$
- **d** $R^1 = OCOCH = C(Me)_2$, $R^2 = R^3 = OCOMe$
- e $R^1 = OCOCH_2C(Me)_2$, $R^2 = R^3 = OCOMe$
- $f R^1 = OCOCH = C(Me)_2, R^2 = O, R^3 = H$
- ${\bf g} \ {\bf R}^1 = {\bf R}^2 = {\sf OCOMe}, \, {\bf R}^3 = {\bf H}$

Phyllocladane-type diterpenoids are very rare in nature as by far most of the tetracyclic diterpenoids belong to the diastereoisomeric *ent*-kaurane series. The scarcity of relevant data of phyllocladanes and the fact that misinterpretations and confusion

concerning the correct denomination exist in the current literature¹) prompted us to confirm the structures of the new natural products, which were based only on spectroscopic data. Therefore, the main constituent **1b** of *P. ambiguus* was chemically transformed to the known natural diterpenoid (16R)-16,17-dihydroxyphyllocladan-3-one (=calliterpenone; **2**) from *Callicarpa macrophylla* $[3]^2)^3$). Earlier we had isolated the closely related (16R)-17,19-bis(acetyloxy)-16-hydroxyphyllocladan-3-one (**3**) from *Plectranthus purpuratus* [5]. The constitution of **3** had been established by X-ray-analysis and the absolute configuration assigned by CD spectroscopy. Therefore, the successful chemical conversion of **3** to calliterpenone (**2**) assures an additional, independent confirmation of the structure of **1b**.

In the course of our investigations, a new natural product, (2S,3R,16R)-phyllocladane-2,3,16,17-tetrol 2,3-diacetate $(\mathbf{1g})$, was isolated, and the chemical transformations of $\mathbf{1a}-\mathbf{f}$ yielded a series of new phyllocladanes. Thus, the actual number of representatives of this skeletal type is significantly increased⁴). In this report, we give a full account of these interconversions, which yielded also some unexpected results [7]. Moreover, reliable spectroscopic arguments for the determination of the configuration at C(16) in phyllocladanes and kauranes as well as for the differentiation of such diastereoisomers are presented.

Because of the continuing confusion and to clear any inconsistencies and discrepancies concerning the denomination and the nomenclature, the correct skeletons and a part of the semisystematic numbering (C(19) is always axial!) are depicted in $Fig. 1^5$).

2. Results and Discussion. – 2.1. Transformation of **1b** and **3** into Calliterpenone (**2**). First, **1b** was protected by forming the acetonide **4** [2] (*Scheme 1*), which was then treated with LiAlH₄ to yield the 2α , 3α -diol **5**. Tosylation of **5** furnished exclusively the mono-tosylate **6**. Subsequently, reaction of **6** with LiAlH₄ afforded the unexpected 3β -hydroxy acetonide **7** [7], which was oxidized with pyridinium chlorochromate (PCC)

¹⁾ For recent examples of inadequacies, see, e.g. [3].

The history of the structure elucidation of calliterpenone (2) is typical of the problems encountered with these diastereoisomeric skeletons. Originally, an erroneous *ent*-kaurane structure had been assigned to 2 [4a]. It was revised in terms of a phyllocladane by chemical transformations [4b], and the revision was confirmed including the determination of the absolute configuration [4c]. Later the relative configuration was verified again by X-ray-analysis [4d].

³⁾ Although the most straightforward route to ketone 2 is a simple transformation of the minor compound 1a, the main constitutent 1b was chosen since it allowed broader studies of the chemical reactivity of such phyllocladanes.

⁴⁾ Only eleven phyllocladanes had been characterized [4] [6] when the structures of 3 [5] and, later, 1a-f [2] were disclosed.

An alternative, applicable name for 'phyllocladane' is '13β-kaurane'. The term indicates the relative position of the 5-membered ring D (C(15)-C(16)) on the same side as the C(10)-C(20) bond. Unfortunately, the skeletons are sometimes not differentiated; in particular, phyllocladanes are mixed up with *ent*-kauranes. Moreover, as the prefix '*ent*' inverts all the following descriptors, the enantiomer of (2S,3R,16R)-phyllocladane-2,3,16,17-tetrol 2,3-diacetate (=(2S,3R,16R)-13β-kaurane-2,3,16,17-tetrol 2,3-diacetate; **1g**) must be called either *ent*-(2S,3R,16R)-phyllocladane-2,3,16,17-tetrol 2,3-diacetate (=*ent*-(2S,3R,16R)-13β-kaurane-2,3,16,17-tetrol 2,3-diacetate; *ent*-1g) or (2R,3S,16S)-*ent*-phyllocladane-2,3,16,17-tetrol 2,3-diacetate (=(2R,3S,16S)-13α-*ent*-kauran-2,3,16,17-tetrol 2,3-diacetate; *ent*-1g).

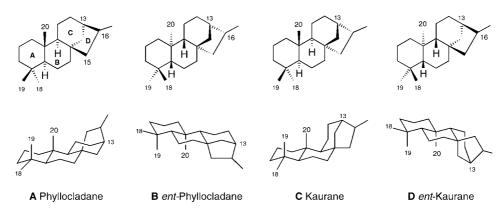
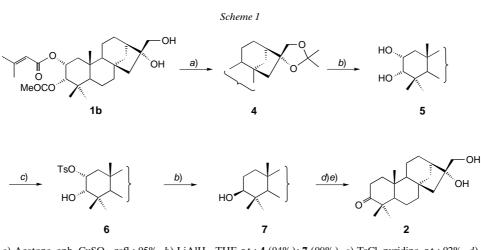



Fig. 1. Structures corresponding to the names phyllocladane (**A**), ent-phyllocladane (**B**), kaurane (**C**), and entaurane (**D**). Note that Chem. Abstr. designates **D** with (16S) configuration as kaurane, this name implying $(5\beta,8\alpha,9\beta,10\alpha,13\alpha,16\beta)$ configuration as defined by Chem. Abstr.; the Chem. Abstr. name of **A** with (16S) configuration is thus $(5\alpha,9\alpha,10\beta)$ -kaurane, and that of **B** with (16S) configuration is $(8\beta,13\beta)$ -kaurane.

a) Acetone, anh. CuSO₄, refl.; 95%. *b*) LiAlH₄, THF, r.t.; **4** (94%); **7** (90%). *c*) TsCl, pyridine, r.t.; 92%. *d*) PCC, NaOAc, CH₂Cl₂, r.t. *e*) 2% H₂SO₄, MeOH, 70°; 91% (*d*) and *e*)).

and then hydrolyzed to the 16,17-dihydroxy ketone **2** (calliterpenone). Comparison of semisynthetic **2** with authentic calliterpenone (**2**) showed both compounds to be identical (TLC, m.p., mixed m.p., $[\alpha]_D$, CD, IR, 1H - and ^{13}C -NMR, MS).

A very similar route was followed for transforming 3 to calliterpenone (2) (*Scheme 2*). As ketone 3 is prone to *retro*-aldol reactions, the most unefficient step in the sequence was the neat removal of the acetate groups to yield the trihydroxy ketone 8. The tosylate 10, prepared from the correspondig acetonide 9, was then treated with LiAlH₄ to afford the 3β -hydroxy acetonide 7, identical to that derived from 6. It is remarkable that the analogous reduction of a related tosylate without the 3-oxo group yielded only traces of the desired hydrocarbon as the nucleophilic reaction almost

Scheme 2

3
$$\xrightarrow{a}$$
 \xrightarrow{OH} $\xrightarrow{O$

a) 5% H_2SO_4 , EtOH, r.t.; 33%. b) Acetone, anh. $CuSO_4$, refl.; 89%. c) TsCl, pyridine, r.t.; 88%. d) LiAl H_4 , THF, r.t.; 84%. e) PCC, NaOAc, CH_2Cl_2 , r.t. f) 2% H_2SO_4 , MeOH, 70° , 3 h; 83% (e) and f)).>

exclusively took place at the S-atom [6d]. This fact demonstrates that the reactivity of ring A in such diterpenoids strongly depends on its conformation. Usual oxidation and hydrolysis of the acetal yielded calliterpenone (2), identical in every respect to both the natural sample and that obtained from 1b.

2.2. retro-Aldol Reaction of 3. The natural product 3 was mentioned to undergo retro-aldol cleavage easily. This was exemplified by the basic hydrolysis leading to the 19-nor compound 11a as well as by the attempted reduction according to Huang-Minlon to give 11b (Scheme 3). The equatorial position of the remaining Me(18) group was established from its original orientation and by the coupling characteristics of 11a (see Exper. Part). Both the unfavorable 1,3-diaxial interaction of the CH₂OAc group with Me(20) and its stereoelectronically optimal arrangement with the C(3) carbonyl group are the driving forces for the retro-aldol reaction.

Scheme 3

OAC
$$\frac{2N \text{ KOH}}{\text{EtOH}}$$
 $R = O$ $R = H_2$

2.3. Transformation of the $2\alpha,3\alpha$ -Dioxy-Substituted Derivative 6 to the 3β -Hydroxy Compound 7. The unexpected one-pot transformation $6 \rightarrow 7$ (Scheme 1) appears to proceed via an elimination yielding an enol(ate) and stereospecific reduction of the

corresponding ketone. However, loss of TsOH in terms of an E2 mechanism is only feasible when ring A adopts the boat conformation; moreover, H-C(3) is less acidic than H-C(2) and is not expected to be abstracted primarily. But an alternative mechanism can be formulated in terms of an electrocyclic elimination of TsOH and hydride reduction from the less hindered ' α -side', as depicted in *Scheme 4*. Although the stereoelectronic requirements for ideal orbital overlap are neither given in this approach, an intramolecular six-membered ring transition state might be entropically favored.

Scheme 4

Scheme 4

$$R^1 = OTS, R^2 = H$$
 $R^1 = H, R^2 = OH$
 $R^1 = OTS, R^2 = H$
 $R^1 = H, R^2 = OH$

The proposed mechanisms were supported to some extent by the fact that 6 reacted with LiAlD₄ to generate exclusively the $(3\alpha$ -D) compound 12 and by the reactivity of the bis(methanesulfonate) derivative 13. The results obtained from the reaction of 13 with LiAlH₄ (*Scheme 5*) seem to support the *E2* mechanism: The predominant product is the 2β -alcohol 14 which, is easily formed from the favorable chair conformation, whereas the 3β -alcohol 7 that would be generated from the disfavored boat form or by the cyclic mechanism is only a minor product. Moreover, a minor amount of the starting diol 5 is regenerated due to nucleophilic reaction at the S-atom of the methanesulfonate groups. A full account on the elucidation of the mechanism is reported in the following paper [7].

With regard to the characterization of further potential phyllocladane-type natural product, (2R,3S,16R)-phyllocladane-2,3,16,17-tetrol (**15**), (3S,16R)-phyllocladane-3,16,17-triol (**18**)⁶), (2R,16R)-phyllocladane-2,16,17-triol (**16**), and (16R)-16,17-trihydroxyphyllocladan-2-one (**17**) were prepared from **5**⁷), **7**, and **14** by hydrolysis and/or oxidation (*Scheme 5* and *Exper. Part*)⁸).

2.4. Epimerization of Calliterpenone (2). Inversion of the configuration at C(16) of 2 was attempted by the route depicted in Scheme 6. The tosylate 19 was treated under

⁶⁾ The (3S,16R)-phyllocladanetriol **18** has been obtained by either microbiological or NaBH₄ reduction of **2** [3b]. The structure depicted in [3b] is a kaurane (see *Fig. 1*), and the physical data are not consistent.

⁷⁾ The tetrol **15** was also prepared from natural **1b** by LiAlH₄ reduction (see *Exper. Part*).

⁸⁾ Until now, these compounds have not been isolated from natural sources.

Scheme 5

a) MeSO₂Cl, pyridine, r.t.; 88%. b) LiAlH₄, THF, r.t.; $\mathbf{5}$ (10%), $\mathbf{7}$ (10%), $\mathbf{14}$ (65%). c) 2% H₂SO₄, MeOH, 70°. d) PCC, NaOAc, CH₂Cl₂, r.t.

$$R^1$$
 OH OH R^2 R^3

15
$$R^1 = R^2 = \alpha$$
-OH, β -H, $R^3 = H$

16
$$R^1 = \alpha$$
-H, β -OH, $R^2 = H_2$, $R^3 = H$

17
$$R^1 = O, R^2 = H_2, R^3 = H$$

18
$$R^1 = H_2$$
, $R^2 = \alpha - H_1\beta - OH_1$, $R^3 = H_2$

33
$$R^1 = H_2$$
, $R^2 = \alpha$ -OH, β -H, $R^3 = H$

34
$$R^1 = \alpha$$
-OH, β -H, $R^2 = \alpha$ -H, β -OH, $R^3 = H$

35
$$R^1 = H_2$$
, $R^2 = \alpha - H_1\beta - OH_1$, $R^3 = OH_2$

basic conditions to yield the epoxyphyllocladanone 20, which was opened by dilute acid (5% H_2SO_4/H_2O) to afford the desired (16S)-epimer 21, besides the regenerated epimeric calliterpenone (2) and the elimination product 17-hydroxyphylloclad-15-en-3-one (22) as the main products.

When epoxy derivative **20** was treated with 60% $HClO_4/H_2O$ [8], the main product was (16R)-3-oxophyllocladan-17-al (**23**) besides **22** and traces of **2** and its (16S)-epimer **21**. Upon standing in solution, **23** was spontaneously oxidized to (16R)-3-oxophyllocladan-17-oic acid (**24**).

Scheme 6

a) TsCl, pyridine, r.t.; 91%. *b*) K₂CO₃, MeOH, r.t.; 91%. *c*) 60% HClO₄, THF, r.t.; **2** and **21** (trace), **22** (4%), **23** (60%). *d*) 5% H₂SO₄, THF, r.t.; **2** (42%), **21** (5%), **22** (30%), **23** (0%). *e*) CDCl₃/O₂ (71%). *f*) TsCl, pyridine, refl.; **25** (87%), **26a/26b** (11%).

The structure of the substituted-ring-D moiety of 20-24 was supported by corresponding ¹H- and ¹³C-NMR data (see *Exper. Part*). The (16R)-configuration of 23 was established by the chemical shift and coupling characteristics of H-C(17): It appeared at δ 9.65 (d, ${}^{3}J(17,16) = 1.7$ Hz). H-C(17) was reported to resonate at δ 9.45 as a s in (16S)-phyllocladan-17-al [9]⁹).

All attempts to improve the yield of 16-epicalliterpenone (21; (16S)) were not satisfactory, obviously due to the fact that the required backside attack of the nucleophile (H₂O) is sterically hindered¹⁰).

2.5. Chlorophyllocladanones 25, 26a, and 26b. In the course of the attempted preparation of tosylate 19, unexpected reaction products were found (*Scheme 6*). When 2 was treated with excess p-toluenesulfonyl chloride in pyridine under reflux, the main compounds were (16R)-17-chloro-16-hydroxyphyllocladan-3-one (25) and the

⁹) Reaction of **2** with borontrifluoride etherate was reported to yield (16S)-3-oxophyllocladan-17-al [10]. However, the ¹H-NMR data show H-C(17) at δ 9.6 (d, ³J = 2 Hz), and there is no comment on the determination of the configuration at C(16). Therefore, our report presents the first unambiguous characterization of **23**

¹⁰⁾ Under acidic conditions, the protonated epoxy moiety can either react by an S_N1 or S_N2 mechanism. In S_N1 mechanisms, which favor tertiary C-atoms, attack is expected at the more highly substituted C-atom. When protonated epoxides react by the S_N2 mechanism, attack is usually at the more highly substituted position. In neutral or basic solution, attack of the nucleophile will rather take place at the less highly substituted C-atom [8].

(16*E*)- and (16*Z*)-17-chlorophylloclad-16-en-3-ones (**26a** and **26b**, resp.) as an unseparable (E)/(Z)-mixture (2:1). Their structures were established by their MS and NMR data (see *Exper. Part*).

2.6. Epimerization of (16R)-16,17-Dihydroxy-ent-kauran-3-one (27). To compare the reactivities of phyllocladane- and kaurane-type diterpenoids, the *ent*-kauranone 27 (abbeokutone) [11] was subjected to the same series of reactions (*Scheme 7*). The tosylate 28 yielded the epoxy-*ent*-kauranone 29¹¹), which was opened by dilute acid (5% H_2SO_4/H_2O) to furnish the expected (16S)-epimer 30¹²) and 17-hydroxy-*ent*-kaur-15-en-3-one (31)¹¹). The predominant products were abbeokutone (27), (16R)-3-oxo-*ent*-kauran-17-al (32a) and (16S)-3-oxo-*ent*-kauran-17-al (32b) as a *ca.* 1:1 mixture ¹³).

Scheme 7

a) TsCl, pyridine, r.t.; 95%. *b*) K₂CO₃, MeOH, r.t.; 95%. *c*) 5% H₂SO₄, THF, r.t.; **27** (4%), **30** (38%), **31** (22%), **32a/32b** (33%).

In the ¹H-NMR spectrum of **32a**, H–C(17) appeared at δ 9.67 (d, ³J(17,16) = 1.7 Hz), and that of **32b** at δ 9.89 (s, H–C(17)). As H–C(17) of (16R)-3-oxo-ent-kauran-17-al was reported to resonate at δ 9.65 (d, ³J(17,16) = 1.2 Hz) [13], the respective assignments are consistent (see also the argumentation for **23**)¹⁴).

2.7. New Phyllocladane-Type Diterpenoids. The (2S,3R,16R)-phyllocladane-2,3,16,17-tetrol 2,3-diacetate (**1g**) was detected in a fraction from *Plectranthus ambiguus* containing **1f**, and its structure was assigned by ¹H-NMR data. Acetalization of the mother liquor of **1f** resulted in an easy separation of the acetonide of **1g**, which

^{11) (16}R)-16,17-Epoxy-ent-kauran-3-one (29) and 17-hydroxy-ent-kaur-15-en-3-one (31) are new compounds and characterized for the first time.

¹²⁾ The 16-epiabbeokutone (30; (16S)) has been isolated first from Euphorbia sieboldiana [12a], later from Homalanthus acuminatus [12b], Sapium rigidifolium [12c], and Euphorbia portulacoides together with its 17-acetate [12d].

^{13) (16}S)-3-Oxo-ent-kauran-17-al (32b) is a new compound, whereas (16R)-3-oxo-ent-kauran-17-al (32a) has been characterized as a reaction product of (16R)-17-hydroxy-ent-kauran-3-one [13].

¹⁴⁾ Due to the enhanced flexibility of the kaurane skeleton (see below), the couplings between H-C(16), CH₂(15), etc., are not resolved.

was carefully hydrolyzed to afford the unknown genuine compound **1g** (for data, see *Exper. Part*). Further proof for the structure was obtained by the preparation of **1g** from **1b** via **5** (see *Scheme 1*), acetylation, and selective hydrolysis.

In addition to the new compounds **8** (*Sect. 2.1* and *Scheme 2*) and **15–18** (*Sect. 2.3* and *Scheme 5*), three further new phyllocladane derivatives were prepared, in view of the characterization of potential natural products: reduction of **1a**, **1f**, and **8** afforded **33**, **34**, and **35**, respectively (*Formulae* in *Sect. 2.3*).

The data of the nineteen new phyllocladanes 1g, 8, 11a, 11b, 15-18, 20-26a,b, and 33-35 and of the three new *ent*-kauran-3-ones 29, 31, and 32b are presented in the *Exper. Part*.

2.8. Determination of the Configuration at C(16) of Phyllocladane- and Kaurane-16,17-diols. From the ent-kaurane series, it is known that the configuration at C(16) can be determined by using the ^1H - and $^{13}\text{C-NMR}$ -data of the 16,17-dihydroxy-ent-kauran-3-ones 27 and 30 and of the ent-kauran-16,17-diols 36 and 37 [12a,b][14]: In the (16R)-series (see 27 and 36), $CH_2(17)$ and C(16) are deshielded ($\Delta\delta$ ca. +0.3 and ca. +2 ppm, resp.), whereas C(17) is shielded ($\Delta\delta$ ca. -4 ppm) with respect to the (16S)-diastereoisomers (see 30 and 37) ($\Delta\delta = \delta(16R) - \delta(16S)$; see Fig. 2). Comparing the spectral data of calliterpenone (2; (16R)) with that of the new 16-epicalliterpenone (21; (16S)) now established that the same set of arguments is valid in the phyllocladane series (Fig. 2). In addition, it seems to apply also to the corresponding 17-(acetyloxy) derivatives as shown for the relevant pair 3 (δ (16R); 4.19 and 4.26 and (16S)-17-(acetyloxy)-16-hydroxy-ent-kauran-3-one [12d] (δ 3.91 and 4.05).

2.9. NMR-Spectroscopic Differentiation between Phyllocladanes and Kauranes. Differences were worked out on very closely related compounds such as the phyllocladane-type calliterpenone (2) and the *ent*-kaurane-type abbeokutone (27) (see Fig. 2). A general feature that fundamentally differentiates the diastereoisomers is the enhanced flexibility of the kaurane skeleton, a fact that generally results in well-resolved ¹H-NMR spectra of the phyllocladanes compared to the *ent*-kauranes. Thus, in calliterpenone (2), $CH_2(2)$ appears as a complex ABXY system at δ 2.38 (ddd, ²J = 15.8 Hz, ³J(2eq,1ax) = 7.1, ³J(2eq,1eq) = 4.1, H_{eq} – C(2)) and 2.52 (ddd, ²J = 15.8 Hz, ³J(2ax,1ax) = 10.8, ³J(2ax,1eq) = 7.2, H_{ax} – C(2)), but in abbeokutone (27), $CH_2(2)$ is a dd at δ 2.47 (2 H, ³J = 8.6, 6.3 Hz). Moreover, in the *ent*-kaurane derivative 27, Me(18) and Me(20) are indistinguishable (s at δ 1.09 (6 H)), whereas they appear as 2 s at δ 1.08 (Me(18)) and 1.03 (Me(20)) in 2. A further example is (16R)-3-oxophyllocladan-17-al (23), which afforded easily interpretable spectra, whereas the corresponding (16R)- and (16S)-3-oxo-*ent*-kauran-17-als (32a/32b) showed only poorly resolved ones¹⁴).

Concerning the relevance of 13 C-NMR data, *Wenkert* and co-workers stated in an early paper that only the chemical shifts of C(14), C(16), and C(20) are of relevant diagnostic value for the differentiation between phyllocladanes and kauranes [15]. However, as only phylloclad-15-ene and phylloclad-16-ene (**38**) could be directly compared with *ent*-kaur-16-ene (**39**) at that time, the significance might be moderate. The availability of recent data now clearly supports this statement (*Fig.* 2). In addition, also C(13) is shielded in the phyllocladane series ($\Delta\delta$ *ca.* -2 ppm); but this shielding intereferes in the 16,17-dioxy compounds where the influence of the *O*-substituents is

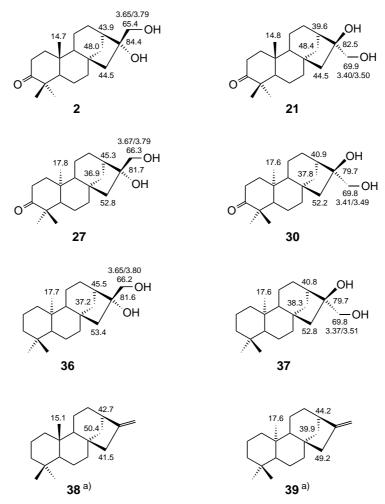


Fig. 2. Diagnostic relevant NMR chemical shifts (CDCl₃) of selected phyllocladanes and ent-kauranes. ¹H-NMR at 400 MHz, ¹³C-NMR at 100.6 MHz. ^{a)} Values taken from [15].

predominant, and it is only reliable when closely related pairs (e.g., 2/27 and 38/39) are compared¹⁵). However, the most-significant value is C(20): Due to the absence of the extra δ -effect from C(12), the angular Me(20) group is shielded in the phyllocladanes and resonates at exceptionally high field (δ ca. 15)¹⁶).

¹⁵) C(13) is an additional probe for the configuration at C(16) in the 16,17-dioxy-substituted compounds as it is shielded in the (16S) series ($\Delta\delta$ ca. -4 ppm).

¹⁶⁾ It was the crucial argument that enabled the discovery of the new phyllocladanes 1a – f. Before discarding the not antioxidant fraction of P. ambiguus [2], its ¹³C-NMR indicated a particular Me group at high field.

In recent times, a similar attempt has been made to correlate spectral data and configurational assignments of kauranoids [3c,d]. But the reports are a source of confusion of terms, compound types, and inconsistent conclusions¹⁷).

3. Remark. – Our recent investigations significantly increased the number of new phyllocladanes. Contrary to the situation in the kauranes, where the *ent*-series is predominant (*ca.* 95%), all phyllocladanes hitherto known belong to the 'normal' series, as no single enantiomer has been evidenced. 'hoffmanniaketone', a tetracyclic diterpenoid isolated from *Hoffmannia strigillosa*, together with its 17-(acetyloxy) derivative, was originally assigned the structure of (16R)-16,17-dihydroxy-*ent*-phyllocladan-3-one (*ent*-2) [16], and the absolute configuration was based on chiroptical data. However, thorough spectral comparison with calliterpenone (2) clearly showed the identity of the two compounds, including their congruent CD spectra¹⁸). As a consequence, the constituent of *Hoffmannia strigillosa* is calliterpenone (2) and the name 'hoffmanniaketone' has to be withdrawn from the literature.

The authors are indebted to the *Swiss National Science Foundation* for the financial support and to the analytical department of our institute for the MS and the *AMX-600* and *DRX-600* NMR spectra. Thanks are due to Prof. Dr. *T. Komori*, Osaka, Japan, for the generous gift of valuable reference samples.

Experimental Part

1. General. TLC: Merck-60F₂₅₄ silica gel plates; detection by UV₂₅₄ light or by spraying with 'mostain' solution ($(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (40 g), $Ce(SO_4)_2$ (0.8 g), 10% H_2SO_4 soln. (800 ml)) and heating (blue spots). Column chromatography (CC): Merck silica gel 60 (40-63 µm). M.p.: Mettler FP 5/52; not corrected. $[\alpha]_D$: Perkin-Elmer-241-MC polarimeter with thermostat B. Braun Thermomix 1441; 10-cm cell. UV: Perkin-Elmer- $\textit{Lambda-9-UV/VIS/NIR spectrophotometer; } \lambda_{max} \; (log \; \epsilon) \; in \; nm. \; CD: \textit{JASCO-J-500A spectropolarimeter; } \lambda$ (Δε) in nm. IR: Perkin-Elmer-1600-FT-IR spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR: Bruker-AC-300 or -ARX-300 (300 and 75.4 MHz, resp.), -AMX-400 (400 and 100.6 MHz, resp.), -DRX-500 (500 and 125.7 MHz, resp.), -AMX-600 or -DRX-600 (600 and 150.9 MHz, resp.) spectrometers; chemical shifts δ in ppm rel. to the assigned solvent ($Me_4Si = 0$ ppm), coupling constants J in Hz; all assignments are based on extensive interpretations of ¹H, ¹H-COSY, DEPT90, DEPT135, ¹³C, ¹H-COSY (HSQC), and ¹³C, ¹H-long-range (HMBC) experiments; spinsystems are interpreted according to 1st-order approximation, although in several complex cases significant AB character shows higher-order spectra; H_{β} -C(15) specifies the H-atom pointing to C(20). GC/MS: Hewlett-Packard HP-5980 series II (GC), HP-5971 MSD (mass-selective detector, EI; 70 eV), column HP-5, 25 m× $0.2 \text{ mm}, 0.33 \text{ }\mu; \text{ injector at } 180^{\circ}, \text{ detector at } 330^{\circ}; \text{ temp. program: } 150^{\circ} (2 \text{ min}), 100^{\circ} \rightarrow 240^{\circ} (\text{rate } 30^{\circ}/\text{min}), 290^{\circ}$ (5 min). MS: Varian MAT 112s and Varian MAT 90 for electron impact (EI; 70 eV); Varian MAT 7011 and Finnigan MAT SSQ 700 for chemical ionization (CI) with NH3, unless otherwise stated; Finnigan MAT TSQ 7000 for electrospray ionization (ESI).

2. Extraction of P. ambiguus: Phyllocladanes $1\mathbf{a} - \mathbf{g}$. Air-dried leaves and stems of P. ambiguus (500 g) were extracted with hexane (3 l) at r.t. (20 h) and then re-extracted (4×) with Et₂O (each 2.5 l, 16 h). The hexane extract was evaporated to give a green semi-solid (6 g, 1.71%). CC (hexane/AcOEt 1:1) yielded $1\mathbf{b}$ (330 mg), $1\mathbf{c}$ (170 mg), and the inseparable ca. 6:1 mixture $1\mathbf{d}/1\mathbf{e}$ (390 mg). Analogous treatment of the Et₂O extract afforded a green gum (18 g, 3.6%) which was purified by CC (hexane/AcOEt 1:1) to yield Fractions A (containing $1\mathbf{a} - \mathbf{d}$) and B (containing further $1\mathbf{b}$ and $1\mathbf{c}$). After further CC and crystallization according to [2],

¹⁷) Unfortunately, the correct structure of 16-epiabbeokutone (**30**; (16S)) [12a] was erroneously revised due to the misapplication of the authors' own arguments [3c].

¹⁸⁾ The CD spectrum of calliterpenone (2) shows a positive Cotton effect at 289 nm. This can be rationalized by the established anti-octant effect for the 8β-methyl group in 3-oxo triterpenes [17], see also [4c].

the following amounts of pure known compounds were isolated: **1a** (520 mg, 0.1%), **1b** (2.77 g, 0.55%), **1c** (1.45 g, 0.29%), **1d/1e** *ca*. 6:1 (390 mg, 0.08%), and **1f** (1.35 g, 0.27%)¹⁹).

The soln. of the acetonide (20 mg) in THF (0.5 ml) and 2% H_2SO_4 soln. (0.5 ml) was stirred at r.t. (20 h). Workup and CC (hexane/AcOEt 10:1) of the residue gave **1g** (10 mg, 41%). Colorless viscous oil. [α]_D²⁰ = -2.6 (c = 0.43, CHCl₃). IR (CHCl₃): 3568, 2942, 2875, 1734, 1457, 1375, 1261, 1156, 1034, 865, 806. ¹H-NMR (500 MHz, CDCl₃): 5.21 (ddd, ${}^3J(2,1ax) = 12.5$, ${}^3J(2,1eq) = 4.5$, ${}^3J(2,3) = 2.8$, H-C(2)); 4.96 (d, ${}^3J(3,2) = 2.8$, H-C(3)); 3.77, 3.62 (dB, ${}^2J = 8.9$, CH₂(17)); 2.12, 1.97 (each s, 2 COMe); 1.00 (s, Me(20)); 0.98 (s, Me(18)); 0.87 (s, Me(19)). 13 C-NMR (125.7 MHZ, CDCl₃): 170.8, 170.7 (COMe); 84.7 (C(16)); 68.2 (C(2)); 65.8 (C(17)); 56.5 (C(9)); 50.5 (C(5)); 48.6 (C(14)); 45.2 (C(15)); 44.1 (C(13)); 43.8 (C(8)); 41.2 (C(7)); 39.2 (C(10)); 38.3 (C(4)); 38.1 (C(1)); 28.2 (C18)); 26.8 (C(12)); 21.9 (C(19)); 21.3, 21.2 (COMe); 19.6 (2C, C(6), C(11)); 15.9 (C(20)). ESI-MS (MeOH/CH₂Cl₂/NaI): 445 (100, [M + Na]⁺).

An identical compound $\mathbf{1g}$ was also obtained from $\mathbf{1b}$ via $\mathbf{5}$ (see below) after acetylation and hydrolysis. The real content of $\mathbf{1g}$ in P. ambiguus could not be determined; it is estimated to be ca. 60 mg (0.01%).

3. (2R,3S,16R)-16,17-(Isopropylidenedioxy)phyllocladane-2,3-diol 3-Acetate 2-(3-Methylbut-2-enoate) (4). Preparation from **1b** and physical data, see [2].

4. (2R,3S,16R)-16,17-(Isopropylidenedioxy)phyllocladane-2,3-diol (5). LiAlH₄ (100 mg) was added to a soln. of **4** (61 mg) in abs. THF (8 ml) and stirred at r.t. (20 min). Then, EtOH and H₂O were added and some dil. H₂SO₄ soln. to dissolve the precipitate. The soln. was extracted with Et₂O, the org. phase washed with H₂O, dried (MgSO₄), and evaporated, and the residue purified by CC (CH₂Cl₂/MeOH 24:1) to yield a white solid that was crystallized from Et₂O/CH₂Cl₂: **5** (43 mg, 94%). White flakes. M.p. $188-190^{\circ}$. IR (KBr): 3200-3600 (br.), 2980, 2938, 2860, 1556, 1540, 1454, 1382, 1370, 1250, 1214, 1148, 1065, 1035, 992, 945, 926, 890, 860, 842, 806, 715, 670, 618. 1 H-NMR (300 MHz, CDCl₃): 4.07, 3.90 (AB, ^{2}J = 8.6, CH₂(17)); 3.98 (ddd, ^{3}J (2ax,1ax) = 12.4, ^{3}J (2ax,1eq) = 4.5, ^{3}J (2ax,3eq) = 2.7, H_{ax}-C(2)); 3.42 (d, ^{3}J (3eq,2ax) = 2.7, H_{eq}-C(3)); 2.24 (dd, ^{2}J = 12.4, ^{4}J (15 β ,14 α) = 2.0, H_{β}-C(15)); 1.38, 1.34 (each s, Me₂C(O)₂); 1.01 (s, Me(20)); 0.91 (s, Me(18)); 0.85 (s, Me(19)). CI-MS (2-methylpropane): 379 (37, [M +H]+), 362 (23), 361 (85, [M +H -H₂O]+), 343 (16, [361 -H₂O]+), 304 (17), 303 (100, [361 - acetone]+), 286 (16), 285 (70, [343 - acetone]+), 273 (15).

5. (2R,3S,16R)-16,17-(Isopropylidenedioxy)phyllocladane-2,3-diol 2-(4-Methylbenzenesulfonate) (6). TsCl (95 mg) was added to a soln. of 5 (70 mg) in abs. pyridine (4 ml). The mixture was stirred at r.t. (24 h), then H₂O was added. The mixture was extracted with Et₂O, the org. phase washed with H₂O, dried (MgSO₄), and evaporated, and the residue separated by CC (hexane/AcOEt 1:1): 6 (93 mg, 94%). White solid. M.p. 81 – 84°. IR (KBr): 3300 – 3600 (br.), 2985, 2935, 2870, 1600, 1560, 1545, 1455, 1370, 1245, 1215, 1190, 1180, 1125, 1100, 1060, 1000, 930, 920, 900, 840, 815, 745, 665. 1 H-NMR (300 MHz, CDCl₃): 7.81, 7.37 (AA'BB', J = 8.2, arom. H); 4.86 (ddd, 3 J(2ax,1ax) = 9.4, 3 J(2ax,1eq) = 7.2, 3 J(2ax,3eq) = 2.5, H_{ax} – C(2)); 3.46 (dd, 3 J(3eq,2ax) = 2.5, H_{eq} – C(3)); 4.05, 3.88 (dd, 2 J = 8.6, CH₂(17)); 2.47 (dd, dd), dd, 1.38, 1.34 (each dd), dd, dd), 346 (9), 345 (33, [517 – TsOH]+), 331 (7), 289 (27), 285 (62), 267 (11), 159 (13), 147 (22), 145 (16), 137 (12), 135 (15), 133 (22), 131 (11), 123 (16), 121 (20), 119 (20), 117 (11), 114 (13), 109 (27), 107 (32), 105 (25), 43 (100).

6. (16R)-16,17,19-17 inhydroxyphyllocladan-3-one (8). A soln. of the natural product 3 (100 mg) in EtOH (5 ml) and 5% H₂SO₄ soln. (5 ml) was stirred at r.t. (15 h). As TLC still showed starting material, the mixture was refluxed at ca. 70° (4 h). H₂O was added, the mixture extracted with Et₂O, the org. phase washed with H₂O, dried (MgSO₄), and evaporated, and the white solid separated by CC (CH₂Cl₂/MeOH 24: $1 \rightarrow 9$:1): 8 (26 mg, 33%). Colorless prisms (from CH₂Cl₂/MeOH). M.p. $162 - 164^{\circ}$. [a] $_D^{20} = -4.4$ (c = 0.3, MeOH). IR (KBr): 3200 - 3500 (br.), 2930, 2850, 1705, 1455, 1435, 1385, 1315, 1260, 1190, 1130, 1095, 1070, 1045, 980, 916, 875, 750, 715, 690, 640. 1 H-NMR (300 MHz, CD₃OD): 4.00, 3.46 (AB, 2 J = 11.3, CH₂(19)); 3.70, 3.58 (AB, 2 J = 8.5, CH₂(17)); 2.71 (ddd, 2 J = 15.1, 3 J(2ax,1ax) = 13.4, 3 J(2ax,1eq) = 6.4, H_{ax} -C(2)); 2.25 (ddd, 2 J = 15.1, 3 J(2eq,1ax) = 5.2, 3 J(2eq,1eq) = 3.0, H_{eq} -C(2)); 1.14 (s, Me(18)); 1.12 (s, Me(20)). CI-MS: 354 (42,

¹⁹) The yield of **1f** could be improved as compared to the reported value (0.13%) [2].

 $[M + NH_4]^+$), 337 (9), 336 (30, M^{++}), 325 (23), 324 (100), 323 (14, $[M + NH_4 - CH_2OH]^+$), 322 (26, $[M + NH_4 - MeOH]^+$), 306 (23, $[324 - H_2O]^+$), 292 (19, $[324 - MeOH]^+$).

7. (16R)-19-Hydroxy-16,17-(isopropylidenedioxy)phyllocladan-3-one (9). To a soln. of 9 (32 mg) in abs. acetone (4 ml) anh. CuSO₄ (50 mg) was added and the mixture refluxed under N₂ (6 h). The CuSO₄ was filtered off, the filtrate evaporated, and the residue purified by CC (CH₂Cl₂/MeOH 100:1 \rightarrow 9:1): 9 (23 mg, 89%). Colorless solid. M.p. 212–214°. ¹H-NMR (300 MHz, CDCl₃): 4.07, 3.91 (AB, ²J = 8.6, CH₂(17)); 3.92, 3.42 (AB, ²J = 11.2, CH₂(19)); 2.92 (br. s, OH–C(19)); 2.57 (ddd, ²J = 16.1, ³J(2ax,1ax) = 9.1, ³J(2ax,1eq) = 4.8, H_{ax}-C(2)); 2.40 (ddd, ²J = 16.1, ³J(2eq,1ax) = ³J(2eq,1eq) = 8, H_{eq}-C(2)); 2.18 (dd, ²J = 14.5, ⁴J(15 β ,14 α) = 2.0, H_{β}-C(15)); 2.01 (m, H–C(13)); 1.39, 1.35 (each s, Me₂C(O)₂); 1.26 (s, Me(18)); 0.91 (s, Me(20)). CI-MS (2-methylpropane): 377 (100, [M + H]⁺), 361 (8), 320 (17), 319 (80, [M + H – acetone]⁺), 306 (9), 271 (5).

8. (16R)-16,17-(Isopropylidenedioxy)-19- $\{[(4-methylphenyl)sulfonyl]oxy]$ phyllocladan-3-one (10). A soln. of TsCl (40 mg) and 9 (15 mg) in abs. pyridine (2 ml) was stirred at r.t. (15 h). Then, H₂O was added, the mixture extracted with Et₂O, the org. phase washed with H₂O, dried (MgSO₄), and evaporated, and the residue separated by CC (CH₂Cl₂): 10 (19 mg, 86%). White solid. M.p. 60- 64° . 1 H-NMR (300 MHz, CDCl₃): 7.75, 7.35 (AA'BB', J = 8.2, arom. H), 4.31, 3.98 (AB, ^{2}J = 10, CH₂(19)); 4.07, 3.90 (AB, ^{2}J = 8.6, CH₂(17)); 2.46 (s, MeC_6H_4); 2.37 (m, CH₂(2)); 2.19 (dd, ^{2}J = 14.5, $^{4}J(15\beta,14\alpha)$ < 1, H $_{\beta}$ -C(15)); 2.00 (m, H-C(13)); 1.41, 1.36 (each s, Me $_{2}$ C(O $_{2}$); 1.08 (s, Me(18)); 0.94 (s, Me(20)). EI-MS: 530 (2, M^{+*}), 515 (7, [M – Me] $^{+}$), 283 (22), 137 (11), 121 (15), 91 (10).

9. (3S,16R)-16,17-(Isopropylidenedioxy)phyllocladan-3-ol (7). To a soln. of 6 (70 mg) in abs. THF (5 ml) was added LiAlH₄ (60 mg). The mixture was stirred at r.t. under N₂ (1 h). Workup as described in *Exper. 4* and CC (CH₂Cl₂) yielded 7 (43 mg, 90%). White solid.

An identical compound **7** (11 mg, 84%) was isolated after analogous treatment of **10** (18 mg) with LiAlH₄ (20 mg). M.p. 151–153°. IR (KBr): 3500, 2985, 2940, 2860, 1558, 1540, 1455, 1382, 1368, 1250, 1212, 1150, 1105, 1056, 1032, 1012, 982, 916, 890, 858, 842, 805, 735, 715. ¹H-NMR (400 MHz, CDCl₃): 4.06, 3.90 (AB, $^2J = 8.6$, CH₂(17)); 3.20 (dd, 3J (3,2ax) = 10.9, 3J (3,2eq) = 4.4, H–C(3)); 2.25 (dd, $^2J = 14.6$, 4J (15 β ,14 α) = 2.2, H_{β}-C(15)); 1.99 (m, H–C(13)); 1.39, 1.34 (each s, Me₂C(O)₂); 0.98 (s, Me(18)); 0.87 (s, Me(20)); 0.77 (s, Me(19)). ¹H-NMR (400 MHz, C₅D₅N): 4.16, 4.00 (AB, $^2J = 8.6$, CH₂(17)); 3.45 (m, w_{1/2} = 25, H–C(3)); 2.28 (dd, $^2J = 14.4$, 4J (15 β ,14 α) = 2.0, H $_{\beta}$ -C(15)); 2.07 (m, H–C(13)); 1.71 (d, $^2J = 14.4$, H $_{\alpha}$ -C(13)); 1.51, 1.44 (each s, Me₂C(O)₂); 1.22 (s, Me(18)); 1.04 (s, Me(19)); 0.88 (s, Me(20)). EI-MS: 362 (4, M⁺⁺), 348 (15), 347 (84, [M-Me]⁺), 329 (7, [347 - H₂O]⁺), 287 (10, [M - OH - acetone]⁺), 269 (100, [287 - H₂O]⁺), 161 (17), 147 (18), 135 (22), 121 (19), 109 (19), 107 (19), 105 (17).

10. (16R)-16,17-Dihydroxyphyllocladan-3-one (= Calliterpenone; **2**). A soln. of **7** (31 mg) in abs. CH_2CI_2 (0.5 ml) was added in one portion to a well-stirred suspension of PCC (39 mg) and a trace of NaOAc in abs. CH_2CI_2 (0.5 ml). The mixture was stirred at r.t. under dry N_2 (2.5 h). Then, abs. Et_2O was added and the supernatant liquid decanted from a black tar. The insoluble residue was washed with abs. Et_2O (3×), the combined org. soln. passed through silica gel (Et_2O), the solvent evaporated, and the white solid residue subsequently dissolved in MeOH (3 ml) and 2% H_2SO_4 soln. (1 ml). The mixture was heated at ca. 70° (3 h). After cooling to r.t., H_2O was added, the mixture extracted with Et_2O , the org. layer washed with H_2O , dried ($MgSO_4$), and evaporated, and the white residue purified by CC ($CH_2CI_2 \rightarrow CH_2CI_2/MeOH$ 100:1): **2** (25 mg, 91%). White needles (from MeOH).

An analogous treatment of **7** (13 mg) that was derived from **3** yielded **2** (9 mg, 83%). M.p. 156–158°. $[a]_{D}^{30} = +33.5$ (c = 0.24, CHCl₃). CD (MeOH, $c = 8.75 \cdot 10^{-4}$ m): 235 (0), 289 (+0.62), 315 (0), 321 (-0.06), 340 (0). IR (KBr): 3450–3400 (br.), 3330, 2970, 2930, 2860, 1705, 1558, 1540, 1480, 1454, 1438, 1415, 1385,1350, 1315, 1248, 1208, 1192, 1162, 1138, 1130, 1118, 1095, 1072, 1054, 1035, 1020, 1005, 985, 962, 940, 918, 872, 836, 700, 672, 655. 1 H-NMR (400 MHz, CDCl₃): 3.79, 3.65 (AB, $^{2}J = 10.9$, CH₂(17)); 2.52 (ddd, $^{2}J = 15.8$, $^{3}J(2ax,1ax) = 10.8$, $^{3}J(2ax,1eq) = 7.2$, H_{ax} –C(2)); 2.38 (ddd, $^{2}J = 15.8$, $^{3}J(2eq,1ax) = 7.1$, $^{3}J(2eq,1eq) = 4.1$, H_{eq} –C(15), H_{eq} –C(14)); 1.94–1.83 (m, H_{eq} –C(1), H_{eq} –C(7), H_{eq} –C(12), H –C(13)); 1.08 (s, Me(18)); 1.03 (s, Me(20)); 1.00 (s, Me(19)). 13 C-NMR (100.6 MHz, CDCl₃): 217.8 (C(3)); 84.4 (C(16)); 65.4 (C(17)); 55.7, 55.2 (C(5), C(9)); 48.0 (C(14)); 47.3 (C(4)); 44.5 (C(15)); 43.9 (C(13)); 43.4 (C(8)); 40.6 (C(7)); 38.1 (C(1)); 37.1 (C(10)); 33.9 (C(2)); 26.7 (C(18)); 26.6 (C(12)); 21.5 (C(19)); 21.2, 19.6 (C(6), C(11)); 14.7 (C(20)). CI-MS (2-methylpropane): 321 (74, $[M+H]^+$), 304 (17), 303 (100, $[M+H-H_2O]^+$), 285 (19, $[303-H_2O]^+$).

Comparison of the dihydroxy ketones **2** derived from both **1b** and **3** with an authentic sample of the natural product calliterpenone (**2**) proved the compounds to be identical (TLC, m.p., mixed m.p., $[a]_D$, CD, IR, 1 H- and 1 C-NMR, CI-MS).

12. (16R)-19-Norphyllocladan-16,17-diol (11b). A mixture of 3 (10 mg), N₂H₄· H₂O (212 mg), N₂H₄· 2 HCl (50 mg), and ethylene glycol (1 g) was heated at 160° (2.5 h). Then, KOH (80 mg) was added, and the temp. was raised gradually to 210° to distill off the volatile substances. Then, the temp. was kept at 210–215° (2.5 h). After cooling, H₂O and dil. H₂SO₄ soln. were added. The mixture was extracted with Et₂O, the Et₂O layer washed with H₂O, dried (MgSO₄), and evaporated, and the residue purified by CC (CH₂Cl₂): 11b (5 mg, 72%). White flakes. M.p. 91 – 93°. [α]₀²⁰ = +12.9 (c = 0.26, CHCl₃). IR (KBr): 3400, 3300, 2930, 2860, 2845, 1452, 1448, 1378, 1350, 1318, 1248, 1132, 1084, 1062, 1052, 1040, 1025, 1000, 968, 920, 874, 695, 685, 664. ¹H-NMR (300 MHz, CDCl₃): 3.78, 3.63 (AB, 2J = 10.9, CH₂(17)); 0.81 (s, Me(20)); 0.81 (d, 3J (4,18) = 6.4, Me(18)). CI-MS: 310 (73, [M + NH₄|⁺), 293 (15), 292 (79, M⁺·), 278 (9, [M + NH₄ – MeOH]⁺), 276 (10), 275 (59, [M + H – H₂O]⁺), 274 (61, [M – H₂O]⁺), 258 (20), 257 (100, [275 – H₂O]⁺).

13. (3\$, 16\$) - 16, 17 - (Isopropylidenedioxy)[3-2H]phyllocladan-3-ol (12). LiAlD₄ (20 mg) was added to a soln. of 6 (24 mg) in abs. THF (3 ml) and the mixture stirred at r.t. under N₂ (1.5 h). Workup and CC as described in *Exper. 9* yielded 12 (15 mg, 92%). White solid. M.p. $146 - 148^{\circ}$. IR (KBr): 3510, 2980, 2938, 2864, 2140, 1556, 1540, 1455, 1434, 1380, 1368, 1246, 1210, 1148, 1105, 1058, 980, 955, 920, 895, 860, 840, 805, 715. 1 H-NMR (300 MHz, CDCl₃): 4.07, 3.91 (AB, $^{2}J = 8.6$, CH₂(17)); 2.25 (dd, $^{2}J = 14.6$, $^{4}J(15\beta, 14\alpha) = 2.2$, H_{β}-C(15)); 1.99 (m, H-C(13)); 1.39, 1.35 (each s, Me₂C(O)₂); 0.98 (s, Me(20)); 0.87 (s, Me(18)); 0.77 (s, Me(19)). CI-MS (2-methylpropane): 364 (15, [M +H]⁺), 346 (6, [M +H -H₂O]⁺), 323 (20), 306 (15, [M +H -acetone]⁺), 289 (16), 288 (100, [306 - H₂O]⁺), 271 (11), 270 (72, [288 - H₂O]⁺).

14. (2R,3S,16R)-16,17-(Isopropylidenedioxy) phyllocladane-2,3-diol 2,3-Bis (methanesulfonate) (13). Methanesulfonyl chloride (160 µl) was added to a soln. of 5 (40 mg) in abs. pyridine (2 ml) and the mixture kept at r.t. (40 h). Workup and CC as described in *Exper.* 5 yielded 13 (50 mg, 88%). White crystals. M.p. $103-105^{\circ}$. 1 H-NMR (300 MHz, CDCl₃): 5.05 (ddd, $^{3}J(2,1ax) = 12.4$, $^{3}J(2,1eq) = 4.5$, $^{3}J(2,3) = 2.6$, H-C(2)); 4.73 (d, $^{3}J(3,2) = 2.6$, H-C(3)); 4.07, 3.91 (AB, $^{2}J = 8.6$, CH₂(17)); 3.15, 3.08 (each s, 2 MeSO₃); 1.39, 1.35 (each s, Me₂C(O)₂); 1.10 (s, Me(20)); 1.02 (s, Me(18), Me(19)). EI-MS: 534 (1.5, M^{++}), 520 (6), 519 (22, $[M-Me]^{+}$), 327 (11, [519-2 MeSO₃]⁺), 285 (12), 267 (100), 185 (10), 171 (14), 159 (14), 157 (10), 147 (15), 145 (29), 135 (25), 133 (44), 131 (13), 121 (16), 119 (57), 114 (17), 109 (27), 107 (21), 105 (25).

16. Epimerization of Calliterpenone (2). (16R)-16-Hydroxy-17-{[(4-methylphenyl)sulfonyl]oxy}phyllocladan-3-one (19). As described in Exper. 5, reaction of 2 (23 mg) with TsCl (70 mg) afforded 19 (31 mg, 91%). White solid. M.p. $55-60^\circ$. IR (KBr): 3480, 2930, 2870, 1695, 1600, 1455, 1388, 1360, 1302, 1190, 1178, 1100, 1050, 1020, 960, 930, 845, 820, 750, 665. 1 H-NMR (300 MHz, CDCl₃): 7.82, 7.37 (AA'BB', J=8.2, arom. H); 4.20, 4.07 (AB, $^2J=9.7$, CH₂(17)); 2.47(s, MeC_6H_4); 2.37 (ddd, $^2J=15.8$, $^3J(2ax,1ax)=7.1$, $^3J(2ax,1eq)=4.1$, $H_{ax}-C(2)$); 2.11 (ddd, $^2J=15.8$, $^3J(2eq,1ax)=4.7$, $^3J(2eq,1eq)=2.3$, $H_{eq}-C(2)$); 1.07 (s, Me(18)); 1.02 (s, Me(20)); 0.93 (s,

Me(19)). CI-MS: 492 (100, $[M + NH_4]^+$), 321 (15), 320 (75, $[M + H - TsOH]^+$), 304 (8), 303 (36), 302 (15, $[320 - H_2O]^+$), 285 (18, $[303 - H_2O]^+$).

(16R)-16,17-Epoxyphyllocladan-3-one (= Epoxycalliterpenone; **20**). A mixture of **19** (31 mg) in abs. MeOH (4 ml) and anh. K_2CO_3 (13 mg) was stirred at r.t. (1 h). H_2O was added, the mixture extracted with Et_2O , the org. phase washed with H_2O , dried (MgSO₄), and evaporated, and the white residue purified by CC (hexane/ CH₂Cl₂ 1:3 \rightarrow 1:6): **20** (8 mg, 91%). White solid. M.p. 161 - 163°. [a] $_0^D$ = + 8.3 (c = 0.58, CHCl₃). IR (KBr): 2940, 2920, 2850, 1702, 1455, 1385, 1365, 1265, 1205, 1145, 1110, 1078, 1020, 1000, 974, 945, 935, 900, 848, 805, 780, 725. 1 H-NMR (300 MHz, CDCl₃): 2.88, 2.81 (AB, 2J = 4.7, CH₂(17)); 2.53 (ddd, 2J = 15.8, 3J (2ax,1ax) = 10.4, 3J (2ax,1eq) = 7.3, H_{ax} - C(2)); 2.41 (ddd, 2J = 15.8, 3J (2eq,1ax) = 7.3, 3J (2eq,1eq) = 4.3, H_{eq} - C(2)); 2.31 (dd, 2J = 14.5, 4J (15 β ,14 α) = 2.4, H_{β} - C(15)); 1.10 (s, Me(18)); 1.04 (s, Me(20)); 1.02 (s, Me(19)). CI-MS: 320 (47, [M + NH₄] $^+$), 303 (92, [M + H] $^+$), 302 (16, M^{++}), 286 (21), 285 (100, [M + H - H₂O] $^+$), 109 (10).

Hydrolysis of **20**: Products **2**, **21**, **22**, and **23**. The mixture of **20** (100 mg) and 5% H_2SO_4 soln. (4 ml) in THF (20 ml) was stirred at r.t. (15 h). After workup according to Exper. 24, the residue was separated by CC (CH₂Cl₂/MeOH 99:1): **22** (30 mg, 30%). Further elution with CH₂Cl₂/MeOH 95:5 afforded calliterpenone (**2**; 45 mg, 42%) and its (16*S*)-epimer **21** (5 mg, 5%).

In a similar procedure, the mixture of **20** (42 mg) and 60% HClO₄ soln. (0.5 ml) in THF (2 ml) was stirred at r.t. (32 h). After workup, the residue was separated by CC ($CH_2Cl_2/MeOH 99:1$): **23** (25 mg, 60%), **22** (1.7 mg, 4%), and traces of **2** and **21**.

 $(16R) \hbox{-} 3-Oxophyllocladan \hbox{-} 17-al \ (\textbf{23}). \ \ White foam. \ IR \ (CHCl_3): 2970, 2939, 2858, 1716, 1699, 1458, 1386, 1114. \ ^1 H-NMR \ (300 \ MHz, CDCl_3): 9.65 \ (\textit{d}, \, ^3 J(17,16) = 1.7, H-C(17)); 2.61 \ (\textit{ddd}, \, ^3 J \ (16,15\beta) = 9.3, \, ^3 J(16,15\alpha) = 5.7, \, ^3 J(16,17) = 1.7, H-C(16)); 2.53 \ (\textit{ddd}, \, ^2 J = 15.8, \, ^3 J(2ax,1ax) = 10.6, \, ^3 J(2ax,1eq) = 7.3, \, H_{ax}-C(2)); 2.42 \ (\textit{m}, \textit{q-like}, \textit{w}_{1/2} \approx 10, H-C(13)); 2.39 \ (\textit{ddd}, \, ^2 J = 15.8, \, ^3 J(2eq,1ax) = 7.3, \, ^3 J(2eq,1eq) = 4.2, \, H_{eq}-C(2)); 2.13 \ (\textit{ddd}, \, ^2 J = 13.6, \, ^3 J(15\beta,16) = 9.3, \, ^4 J(15\beta,14ax) = 2.3, \, H_{\beta}-C(15)); 1.93 \ (\textit{ddd}, \, ^2 J = 13.3, \, ^3 J(1eq,2ax) = 7.3, \, ^3 J(1eq,2eq) = 4.2, \, H_{eq}-C(1)); 1.08 \ (\textit{s}, Me(18)); 1.04 \ (\textit{s}, Me(19), Me(20)). \ ^{13}C-NMR \ (75.4 \ MHz, CDCl_3): 217.5 \ (C(3)); 203.0 \ (C(17)); 56.0 \ (C(16)); 55.8 \ (C(9)); 55.4 \ (C(5)); 47.9 \ (C(14)); 47.4 \ (C(4)); 44.5 \ (C(8)); 39.8 \ (C(7)); 38.4 \ (C(1)); 37.2 \ (C(10)); 36.2 \ (C(13)); 34.0 \ (C(2)); 32.0 \ (2C, C(12), C(15)); 26.8 \ (C(18)); 21.5 \ (C(19)); 21.3 \ (C(11)); 20.0 \ (C(6)); 15.0 \ (C(20)). \ CI-MS: 320 \ (100, [M+NH_4]^+), 303 \ (5, [M+H]^+).$

(16R)-3-Oxophyllocladan-17-oic Acid (24). Aldehyde 23 (15 mg) was left in CDCl₃ in an NMR tube for several weeks at 4°, until ¹H-NMR showed the disappearance of the CHO signal. CC (CH₂Cl₂/MeOH 98:2) gave pure 24 (11.3 mg, 71%). Colorless viscous oil. IR (CHCl₃): 3516, 3400 – 2500, 2974, 2939, 2858, 1701, 1459, 1386, 1280, 1130. ¹H-NMR (300 MHz, CDCl₃): 2.67 (dd, 3 J(16,15 β) = 9.3, 3 J(16,15 α) = 5.7, H−C(16)); 2.53 (ddd, 2 J = 15.8, 3 J(2ax,1ax) = 10.6, 3 J(2ax,1eq) = 7.3, H_{ax}−C(2)); 2.42 (m, q-like, m_{1/2} ≈ 10, H−C(13)); 2.39 (ddd, 2 J =

15.8, ${}^{3}J(2eq,1ax) = 7.3$, ${}^{3}J(2eq,1eq) = 4.1$, $H_{eq} - C(2)$); 2.32 (ddd, ${}^{2}J = 13.6$, ${}^{3}J(15\beta,16) = 9.3$, ${}^{4}J(15\beta,14ax) = 2.1$, $H_{\beta} - C(15)$); 1.92 (ddd, ${}^{2}J = 13.3$, ${}^{3}J(1eq,2ax) = 7.3$, ${}^{3}J(1eq,2eq) = 4.1$, $H_{eq} - C(1)$); 1.08 (s, Me(18)); 1.03 (s, Me(19), Me(20)). ${}^{13}C$ -NMR (75.4 MHz, CDCl₃): 217.7 (C(3)); 181.7 (C(17)); 55.7 (C(9)); 55.5 (C(5)); 48.4 (C(14)); 47.6 (C(16)); 47.4 (C(4)); 44.8 (C(8)); 39.8 (C(7)); 39.7 (C(13)); 38.4 (C(1)); 37.2 (C(10)); 36.6 (C(15)); 34.1 (C(2)); 32.2 (C(12)); 26.8 (C(18)); 21.5 (C(11)); 21.4 (C(19)); 19.7 (C(6)); 15.0 (C(20)). EI-MS: 290 (48, [M - CO]^+), 288 (100, [M - H₂CO]^+), 281 (31), 207 (54), 202 (59), 186 (91).

Chlorophyllocladanones **25** and **26a/26b**. A soln. of TsCl (98 mg) and **2** (36 mg) in abs. pyridine (4 ml) was refluxed (15 h). Workup according to *Exper. 5* and CC (CH₂Cl₂/MeOH 95:5) yielded **25** (33 mg, 87%) and an (*E/Z*)-mixture **26a/26b** 2:1 (4 mg, 11%), both as colorless oils.

(16R)-17-Chloro-16-hydroxyphyllocladan-3-one (=17-Chlorocalliterpenone; **25**): IR (CHCl₃): 3570, 2970, 2941, 2864, 1698, 1458, 1430, 1386, 1313, 1261, 1205, 1029. 1 H-NMR (600 MHz, CDCl₃): 3.86, 3.75 (AB, ^{2}J = 11.0, CH₂(17)); 2.55 (ddd, ^{2}J = 15.8, ^{3}J (2ax,1ax) = 10.9, ^{3}J (2ax,1eq) = 7.4, Hax – C(2)); 2.39 (ddd, ^{2}J = 15.8, ^{3}J (2eq,1ax) = 6.8, ^{3}J (2eq,1eq) = 3.9, H_{eq} – C(2)); 2.19 (ddd, ^{2}J = 11.3, ^{3}J (14eq,13) = 4.6, ^{4}J (14eq,12eq) = 2.7, H_{eq} – C(14)); 2.08 (dd, ^{2}J = 14.9, ^{4}J (15β,14ax) = 1.5, H_β – C(15)); 1.99 (m, q-like, $w_{1/2} \approx 9$, H – C(13)); 1.89 (ddd, ^{2}J = 13.2, ^{3}J (1eq,2ax) = 7.4, ^{3}J (1eq,2eq) = 3.9, H_{eq} – C(1)); 1.10 (s, Me(18)); 1.05 (s, Me(19)); 1.01 (s, Me(20)). 13 C-NMR (150.9 MHz, CDCl₃): 217.4 (C(3)); 83.2 (C(16)); 55.7 (C(9)); 55.3 (C(5)); 51.0 (C(17)); 47.8 (C(14)); 47.7 (C(4)); 45.3 (C(15)); 44.9 (C(13)); 44.0 (C(8)); 40.5 (C(7)); 38.2 (C(1)); 37.1 (C(10)); 34.0 (C(2)); 26.8 (C(18)); 26.5 (C(12)); 21.6 (C(19)); 21.2 (C(11)); 19.8 (C(6)); 16.5 (C(20)). CI-MS: 358 (29, [M(37 CI) + NH₄]+), 356 (100, [M(35 CI) + NH₄]+), 338 (5, M(35 CI)+·), 320 (20, [M – H₂O]+).

(16E)- and (16Z)-17-Chlorophylloclad-16-en-3-ones (**26a/26b**): IR (CHCl₃): 2977, 2938, 2858, 1698, 1493, 1445, 1385, 1250, 1112, 1073. ¹H-NMR (300 MHz, CDCl₃): (E)-isomer **26a**²⁰): 5.77 (m, q-like, $w_{1/2} \approx 5$, H-C(17)); 3.00 (m, q-like, $w_{1/2} \approx 10$, H-C(13)); 2.76 (dd, $^2J = 15.2$, $^4J(15\beta,14ax) = 1.4$, H $_{\beta}$ -C(15)); 2.52 (ddd, $^2J = 15.8$, $^3J(2ax,1ax) = 10.6$, $^3J(2ax,1eq) = 7.3$, H $_{ax}$ -C(2)); 2.39 (ddd, $^2J = 15.8$, $^3J(2eq,1ax) = 7.3$, $^3J(2eq,1eq) = 4.1$, H $_{eq}$ -C(2)); 1.96-1.84 (m, H $_{eq}$ -C(1), H $_{eq}$ -C(12), H $_{\alpha}$ -C(15)); 1.08 (s, Me(18)); 1.03 (s, Me(19)); 1.01 (s, Me(20)). ¹³C-NMR (75.4 MHz, CDCl₃): 217.4 (C(3)); 149.0 (C(16)); 106.5 (C(17)); 55.7 (C(9)); 55.3 (C(5)); 49.2 (C(14)); 47.4 (C(4)); 43.8 (C(8)); 39.9 (2C, C(7), C(15)); 39.6 (C(13)); 38.2 (C(1)); 37.1 (C(10)); 34.0 (C(2)); 29.8 (C(12)); 26.7 (C(18)); 21.5 (C(19)); 21.2 (C(11)); 19.8 (C(6)); 15.0 (C(20)); (Z)-isomer) **26b** 20): 5.77 (m, q-like, $w_{1/2} \approx 5$, H-C(17)); 2.82 (m, t-like, $w_{1/2} \approx 6$, H $_{\beta}$ -C(15)); 2.66 (m, q-like, $w_{1/2} \approx 10$, H-C(13)); 2.52 (ddd, $^2J = 15.8$, $^3J(2ax,1ax) = 10.6$, $^3J(2ax,1eq) = 7.3$, H $_{ax}$ -C(2)); 2.39 (ddd, $^2J = 15.8$, $^3J(2eq,1ax) = 7.3$, $^3J(2eq,1eq) = 4.1$, H $_{eq}$ -C(2)); 1.96-1.84 (m, H $_{eq}$ -C(1), H $_{eq}$ -C(12), H $_{a}$ -C(15)); 1.09 (s, Me(18)); 1.05 (s, Me(19)); 1.04 (s, Me(20)). ¹³C-NMR (75.4 MHz, CDCl₃): 217.4 (C(3)); 150.1 (C(16)); 106.6 (C(17)); 55.7 (C(9)); 55.3 (C(5)); 50.1 (C(14)); 47.4 (C(4)); 42.5 (C(8)); 41.5 (C(19)); 21.2 (C(11)); 19.8 (C(6)); 15.0 (C(20)): CI-MS: 340 (33, [M(³⁷Cl) + NH₄]⁺), 338 (100, [M(³⁵Cl) + NH₄]⁺), 321 (5, [M(³⁵Cl) + H]⁺), 296 (6), 234 (29).

17. Epimerization of (16R)-16,17-Dihydroxy-ent-kauran-3-one (=Abbeokutone; 27). Data of 27. CD (MeOH, $c=1.38\cdot 10^{-4}$ M): 228 (0), 290 (-1.05), 319 (0), 323 (+0.03), 340 (0). ¹H-NMR (300 MHz, CDCl₃): 3.79, 3.67 (AB, $^2J=10.9$, CH₂(17)); 2.47 (dd, $^3J=8.6$, 6.3, CH₂(2)); 2.08 (br. m, $w_{1/2}\approx 15$, H–C(13)); 2.00 (dd, $^2J=13.1$, $^3J=6.3$, $H_{\rm eq}$ -C(1)); 1.92 (dd, $^2J=11.9$, $^4J(15\beta,14ax)=2.6$, H_{β} -C(15)); 1.08 (s, Me(18), Me(20)); 1.03 (s, Me(19)). ¹³C-NMR (100.6 MHz, CDCl₃): 217.9 (C(3)); 81.7 (C(16)); 66.3 (C(17)); 55.4 (C(9)); 54.3 (C(5)); 52.8 (C(15)); 47.2 (C(4)); 45.3 (C(13)); 44.4 (C(8)); 40.9 (C(7)); 39.2 (C(1)); 38.5 (C(10)); 36.9 (C(14)); 34.0 (C(2)); 27.2 (C(18)); 26.0 (C(12)); 21.6 (C(6)); 20.9 (C(19)); 18.8 (C(11)); 17.8 (C(20)). EI-MS: 302 (<5, M^+ ··), 289 (100, [M – Me – H_2 O]+), 271 (20), 247 (6). Further physical data in [11c-e].

(16R)-16-Hydroxy-17-{[(4-methylphenyl)sulfonyl]oxy])-ent-kauran-3-one (28). As described in Exper. 5, reaction of 27 (10 mg) with TsCl (30 mg) and CC (hexane/Et₂O 1:2) afforded 28 (14 mg, 95%). White foam. 1 H-NMR (300 MHz, CDCl₃): 7.81, 7.36 (AA'BB', J=8.1, arom. H); 4.19, 4.11 (AB, $^2J=9.6$, CH₂(17)); 2.46 (dd, $^3J=8.4$, 6.6, CH₂(2); s, MeC_6H_4); 2.08 (m, $w_{1/2}\approx 12$, H-C(13)); 1.07 (s, Me(18)); 1.05 (s, Me(20)); 1.01 (s, Me(19)).

(16R)-16,17-Epoxy-ent-kauran-3-one ('Epoxyabbeokutone'; **29**). As described in Exper. 16, reaction of **28** (14 mg) with anh. K_2CO_3 (14 mg) in MeOH (5 ml) yielded **29** (9 mg, 95%). White tiny crystals. ¹H-NMR (300 MHz, CDCl₃): 2.89, 2.82 (AB, 2J = 4.7, CH₂(17)); 2.49 (dd, 3J = 8.6, 6.3, CH₂(2)); 1.85 (m, $w_{1/2} \approx 12$, H-C(13)); 1.09 (s, Me(18), Me(20)); 1.05 (s, Me(19)).

²⁰⁾ The assignments are based on the respective shielding effects of the Cl-atom on H-C(13) and CH₂(15). Moreover, assuming an E2 mechanism, the (E)-isomer is expected to be predominant due to a favored conformation of 25.

Hydrolysis of **29**: Products **27**, **30**, **31**, and **32a**/3**2b**. As described in Exper. 16, hydrolysis of **29** (9 mg) in THF (2 ml) and 5% H_2SO_4 soln. (0.5 ml) followed by CC (hexane/Et₂O 1:2 \rightarrow CH₂Cl₂/MeOH 95:5) gave abbeokutone (**27**; 3.6 mg, 38%), the 16-epimer **30** (0.4 mg, 4%), **31** (2 mg, 22%), and **32a**/3**2b** (3 mg, 33%) as a 1:1 mixture of the 16-epimers.

(16S)-16,17-Dihydroxy-ent-kauran-3-one (=16-Epiabbeokutone; **30**). White foam. IR (CHCl₃): 3024, 3016, 2935, 2869, 1698, 1459, 1386, 1228, 1158, 1114, 1051, 1019. ¹H-NMR (300 MHz, CDCl₃): 3.49, 3.41 (AB, 2J = 10.8, CH₂(17)); 2.47 (dd, 3J = 8.6, 3J = 6.3, CH₂(2)); 2.08 (m, w_{1/2} ≈ 15, H−C(13)); 2.00 (m, dd-like, w_{1/2} ≈ 22, CH₂(1)); 1.92 (dd, 2J = 11.9, 4J (15 β ,14ax) = 2.6, H_β−C(15)); 1.08 (s, Me(18), Me(20)); 1.03 (s, Me(19)). ¹³C-NMR (75.4 MHz, CDCl₃): 217.9 (C(3)); 79.7 (C(16)); 69.8 (C(17)); 55.6 (C(5)); 54.3 (C(9)); 52.2 (C(15)); 47.1 (C(4)); 43.3 (C(8)); 40.9 (C(13)); 40.7 (C(7)); 39.2 (C(1)); 38.5 (C(10)); 37.8 (C(14)); 34.0 (C(2)); 27.2 (C(18)); 26.6 (C(12)); 21.2 (C(6)); 20.9 (C(19)); 19.3 (C(11)); 17.6 (C(20)). EI-MS: 302 (5, M⁺⁺), 289 (100, [M − Me − H₂O]⁺), 271 (20), 247 (6). Further physical data in [12a,b].

17-Hydroxy-ent-kaur-15-en-3-one (**31**). White foam. IR (CHCl₃): 3025, 2934, 2864, 1698, 1460, 1386, 1368, 1112, 1002. ¹H-NMR (300 MHz, CDCl₃): 5.38 (br. s, $w_{1/2} \approx 4$, H−C(15)); 4.21 (br. s, $w_{1/2} \approx 6$, CH₂(17)); 2.58 (m, q-like, $w_{1/2} \approx 11$, H−C(13)); 2.48 (m, td-like, CH₂(2)); 2.04 (m, ddd-like, CH₂(1)); 1.12 (s, Me(18)); 1.09 (s, Me(20)); 1.03 (s, Me(19)). ¹³C-NMR (75.4 MHz, CDCl₃): 217.9 (C(3)); 146.5 (C(16)); 135.1 (C(15)); 61.3 (C(17)); 54.4 (C(5)); 48.7 (C(8)); 47.7 (C(9)); 47.3 (C(4)); 43.6 (C(7)); 41.1 (C(13)); 39.4 (C(1)); 38.7 (C(10)); 38.3 (C(14)); 34.2 (C(2)); 27.1 (C(18)); 25.4 (C(12)); 21.0 (C(19)); 20.4 (C(6)); 19.2 (C(11)); 17.5 (C(20)). EI-MS: 302 (35, M⁺⁺), 244 (14), 216 (27), 159 (27), 91 (100).

 $(16R) - and (16S) - 3 - Oxo-ent-kauran-17 - al (\mathbf{32a/32b}). \text{ White foam. IR } (CHCl_3): 3027, 2935, 2864, 1701, 1460, 1385, 1114. $^1H-NMR (300 MHz, CDCl_3): 32a (16R): 9.67 (d, $^3J(17,16) = 1.7, H-C(17)): 2.84 (m, H-C(16)): 2.58 (m, H-C(13)): 2.47 (m, td-like, CH_2(2)): 2.00 (m, td-like, CH_2(1)): 1.85 (m, dd-like, CH_2(15)): 1.08 (s, Me(18)): 1.04 (s, Me(20)): 1.03 (s, Me(19)): 32b (16S): 9.89 (s, H-C(17)): 2.77 (s, H-C(16)): 2.58 (m, H-C(13)): 2.47 (m, td-like, CH_2(2)): 2.00 (m, td-like, CH_2(1)): 1.80 (m, dd-like, CH_2(15)): 1.08 (s, Me(18)): 1.04 (s, Me(20)): 1.03 (s, Me(19)). EI-MS: 302 (40, <math>M^{++}$), 244 (49), 216 (95), 187 (42), 159 (100).

18. Transformation of Derivatives into New Phyllocladanes. For the characterization as potential natural products, the following compounds were prepared:

(2R,16R)-Phyllocladane-2,16,17-triol (**16**). As described in Exper. 10, acetonide **14** (14 mg) was hydrolyzed with 2% H₂SO₄ soln. (2 ml), worked up, and purified by CC (CH₂Cl₂/MeOH 9:1): **16** (12 mg, 96%). White solid. M.p. 200 – 204°. [α]₀²⁰ = +44.8 (c = 0.33, MeOH). IR (KBr): 3200 – 3600 (br.), 2930, 2860, 1460, 1455, 1385, 1366, 1200, 1125, 1072, 1035, 1000, 985, 965, 912, 870, 810, 678. ¹H-NMR (300 MHz, (CD₃)₂CO): 3.42 (m, w_{1/2} ≈ 10, H–C(2)); 3.68, 3.51 (AB, 2J = 11.0, CH₂(17)); 1.13 (s, Me(20)); 0.97 (s, Me(18)); 0.88 (s, Me(19)). CI-MS: 340 (100, [M + NH₄]⁺), 323 (13), 322 (62, M⁺⁺), 305 (21), 304 (40, [M - H₂O]⁺), 288 (12), 287 (56, [M + H - 2 H₂O]⁺), 273 (5), 270 (9), 269 (44, [287 - H₂O]⁺).

(16R)-16,17-Dihydroxyphyllocladan-2-one (17). Oxidation of 14 (24 mg) with PCC (32 mg), followed by hydrolysis of the acetal, workup, and CC as described in *Exper. 10* afforded 17 (17 mg, 79%). White crystals. M.p. 174–176°. $[a]_0^{20} = +40.7$ (c = 0.41, CHCl₃). IR (KBr): 3500. 3430, 2930, 2898, 2850, 1702, 1460, 1390, 1370, 1300, 1280, 1188, 1145, 1125, 1055, 1038, 1028, 1008, 985, 965, 916, 870, 802, 755, 725, 670, 660. ¹H-NMR (300 MHz, CDCl₃): 3.79, 3.62 (AB, $^2J = 10.9$, CH₂(17)); 1.07 (s, Me(20)); 0.88 (s, Me(18), Me(19)). CI-MS: 338 (100, $[M + NH_4]^+$), 321 (20, $[M + H]^+$).

(3S,16R)-Phyllocladane-3,16,17-triol (18). Hydrolysis of acetal **7** (10 mg) as described in Exper. 10 and CC (CH₂Cl₂/MeOH, 90:1) afforded **18** (9 mg, 100%). White crystals (from CH₂Cl₂/MeOH). M.p. 148–150°. [α]_D³⁰ = +18.5 (c = 0.47, MeOH). IR (KBr): 3200–3600 (br.), 2930, 2860, 1454, 1436, 1382, 1368, 1348, 1305, 1255, 1205, 1128, 1088, 1074, 1032, 984, 918, 874, 855, 830, 745, 695, 642. ¹H-NMR (300 MHz, (CD₃)₂CO): 3.66, 3.51 (AB, 2J = 10.8, CH₂(17)); 3.61 (AB, AB, AB,

The following compounds were prepared by reaction with excess $LiAlH_4$ in THF at r.t., workup, and CC separation as described in *Exper. 4*.

(3R,16R)-Phyllocladane-3,16,17-triol (33). From the natural product 1a (10 mg), we obtained 33 (8 mg, 91%). White needles (from CH₂Cl₂/MeOH). M.p. 193 – 196°. [α] $_{0}^{20}$ = -3.9 (c = 0.21, MeOH). IR (KBr): 3300 – 3500 (br.), 2930, 2860, 1450, 1435, 1385, 1350, 1315, 1305, 1245, 1205, 1195, 1146, 1128, 1095, 1078, 1055, 1042, 1008, 985, 938, 918, 874, 800, 685, 665, 618. 1 H-NMR (300 MHz, (CD₃)₂CO): 3.68, 3.50 (AB, 2 J = 10.9, CH₂(17)); 3.31 (m, t-like, w_{1/2} \approx 7, H – C(3)); 0.91 (s, Me(20)); 0.90 (s, Me(18)); 0.80 (s, Me(19)). CI-MS: 340 (43, [M + NH₄] $^{+}$), 323 (9), 322 (45, M $^{+}$), 320 (6), 305 (21), 304 (33, [M – H₂O] $^{+}$), 288 (16), 287 (84, [M + H – 2 H₂O] $^{+}$), 270 (20), 269 (100, [287 – H₂O] $^{+}$), 248 (5).

(2R,3S,16R)-Phyllocladane-2,3,16,17-tetrol (**15**). From the natural product **1b** (55 mg), we obtained **15** (24 mg, 60%). White crystalline solid. M.p. 246 – 249°. $[a]_D^{20} = +12.0$ (c=0.35, MeOH). IR (KBr): 3500, 3390, 3290, 2945, 2870, 1558, 1540, 1450, 1380, 1350, 1325, 1305, 1295, 1285, 1255, 1212, 1195, 1150, 1130, 1085, 1075, 1040, 1010, 985, 952, 935, 915, 870, 830, 690, 620. 1 H-NMR (300 MHz, CD₃OD): 3.91 ($m, w_{1/2} \approx 24, H-C(2)$); 3.68, 3.54 ($AB, ^2J=11.3$, CH₂(17)); 3.30 (m, overlapping with the solvent peak, H-C(3)); 0.97 (s, Me(18)); 0.95 (s, Me(20)); 0.85 (s, Me(19)). 1 H-NMR (400 MHz, C₃D₅N): 4.37 ($m, w_{1/2} \approx 22, H-C(2)$); 4.18, 4.06 ($AB, ^2J=10.5$, CH₂(17)); 3.84 ($d, ^3J(3,2) \approx 1, H-C(3)$); 1.37 (s, Me(18)); 1.13 (s, Me(20)); 1.03 (s, Me(19)). CI-MS: 356 (100, [$M+NH_3$]+), 339 (15), 338 (76, M^{++}), 324 (9, [$M+NH_3-MEOH$]+).

The same compound 15 (8.5 mg, 95%) was also obtained after hydrolysis of acetal 5 (10 mg).

(3S,16R)-Phyllocladane-3,16,17,19-tetrol (35). Trihydroxy ketone 8 (5 mg) yielded 35 (2.5 mg, 63%). Amorphous white solid. 1 H-NMR (300 MHz, CD₃OD): 4.11, 3.46 (AB, ^{2}J = 11.2, CH₂(19)); 3.68, 3.55 (AB, ^{2}J = 11.3, CH₂(17)); 3.52 (m, H – C(3)); 1.18 (s, Me(18)); 0.89 (s, Me(20)). CI-MS: 356 (100, [M + NH₄] $^{+}$), 338 (100, M $^{+}$), 324 (46, [M + NH₄ – MeOH] $^{+}$), 323 (21).

 $(16R) - 17, 19 - Bis(acetyloxy) - 16 - hydroxyphyllocladan - 3 - one (3). Revision of NMR Data^{21}). \ ^1H - NMR (400 MHz, CDCl_3): 4.60, 3.91 (AB, <math>^2J = 11.3$, CH₂(19)); 4.26, 4.19 (AB, $^2J = 11.3$, CH₂(17)); 2.73 (ddd, $^2J = 15.4$, $^3J(2ax,1ax) = 13.7$, $^3J(2ax,1eq) = 6.4$, $H_{ax} - C(2)$); 2.33 (ddd, $^2J = 15.4$, $^3J(2eq,1ax) = 5.1$, $^3J(2eq,1eq) = 2.8$, $H_{eq} - C(2)$); 2.13, 2.00 (each s, 2 COMe); 1.16 (s, Me(20)); 1.13 (s, Me(18)). $^{13}C - NMR$ (100.6 MHz, CDCl₃): 212.8 (C(3)); 170.9, 170.95 (2 COMe), 82.1 (C(16)); 67.4 (C(17)); 65.8 (C(19)); 57.1 (C(9)); 55.5 (C(5)); 51.5 (C(4)); 47.6 (C(14)); 44.3 (C(15)); 44.1 (C(13)); 43.1 (C(8)); 40.7 (C(7)); 38.3 (C(1)); 36.9 (C(10)); 34.4 (C(2)); 26.3 (C(12)); 20.9 (C(11)); 20.6 (2C, COMe), 20.5 (C(18)); 19.4 (C(6)); 14.6 (C(20)).

REFERENCES

- C. Bürgi, P. Rüedi, Helv. Chim. Acta 1993, 76, 1890; C. Bürgi, G. Liu, P. Rüedi, Helv. Chim. Acta 1993, 76, 1901; W. Breu, A. Sendl, C. Bürgi, P. Rüedi, H. Wagner, Planta Med. 1990, 56, 665; M. Juch, P. Rüedi, Helv. Chim. Acta 1997, 80, 436.
- [2] G. Liu, P. Rüedi, Phytochemistry 1996, 41, 1563.
- [3] a) A. K. Singh, P. K. Agrawal, *Phytochemistry* 1994, 37, 587; b) A. K. Singh, P. K. Agrawal, *Indian J. Chem. Sect. B* 1994, 33, 1205; c) P. K. Agrawal, V. Bishnoi, A. K. Singh, *Phytochemistry* 1995, 39, 929; d) P. K. Agrawal, A. K. Singh, R. S. Bhakuni, *Indian J. Chem. Sect. B* 1996, 35, 803.
- [4] a) A. Chatterjee, S. K. Desmukh, S. Chandrasekharan, Tetrahedron 1972, 28, 4391; b) S. A. Ahmad, A. Zaman, Tetrahedron Lett. 1973, 24, 2179; c) E. Fujita, M. Ochiai, I. Ichida, A. Chatterjee, S. K. Deskmukh, Phytochemistry 1975, 14, 2249; d) W. H. Wong, C. Wei, S. E. Loke, T. C. W. Mak, Acta Crystallogr. Sect. C 1991, 47, 906.
- [5] S. B. Katti, P. Rüedi, C. H. Eugster, Helv. Chim. Acta 1982, 65, 2189.
- [6] a) M. Tsutsui, E. A. Tsutsui, Chem. Rev. 1959, 59, 1031; b) J. D. P. Campello, S. F. Fonseca, C. J. Chang, E. Wenkert, Phytochemistry 1975, 14, 243; c) E. F. Seratoni, A. Krajewski, R. Mongiorgi, L. R. D. Sanseverino, G. M. Sheldrick, Acta Crystallogr., Sect. B 1978, 34, 1311; d) R. F. Raffauf, M. D. Menachery, P. W. Le Quesne, E. V. Arnold, J. Clardy, J. Org. Chem. 1981, 46, 1094; e) R. Noble, J. Knox, R. Alexander, R. Kagi, J. Chem. Soc., Chem. Commun. 1985, 32.
- [7] R. Müller, P. Rüedi, Helv. Chim. Acta 2003, 86, 439.
- [8] J. March, 'Advanced Organic Chemistry; Reactions, Mechanisms, and Structure', 3rd edn., J. Wiley & Sons, New York – Chichester – Brisbane – Toronto – Singapore, 1985, p. 325, 332, and ref. cit. therein.
- [9] K. M. Baker, L. H. Briggs, J. G. St. C. Buchanan, R. C. Cambie, B. R. Davis, R. C. Hayward, G. A. S. Long, P. S. Rutledge, J. Chem. Soc., Perkin Trans. 1 1972, 190.
- [10] P. Sengupta, M. Sen, B. C. Pal, S. C. Pakrashi, E. Ali, J. Indian Chem. Soc. 1976, 53, 1172.

²¹) Due to a calibration error, the NMR data of 3 are not correctly reported in [5].

- [11] a) D. A. H. Taylor, *J. Chem. Soc.* (C) 1967, 1360; b) J. R. Hanson, A. F. White, *Tetrahedron* 1970, 26, 4839;
 c) F. Bohlmann, C. Zdero, B. L. Turner, *Phytochemistry* 1984, 23, 1055; d) P. Rüedi, E. Wollenweber, D. Marx, C. Scheele, *Z. Naturforsch.* (C) 1989, 44, 901; e) W. F. Tinto, G. Blyden. W. F. Reynolds, S. McLean, *J. Nat. Prod.* 1991, 54, 1127.
- [12] a) Y. L. Ding, Z. J. Jia, *Phytochemistry* 1991, 30, 2413; b) K. R. Gustafson, M. G. H. Munro, J. W. Blunt, J. H. Cardellina II, J. B. McMahon, R. J. Gulakowski, G. M. Cragg, P. A. Cox, L. S. Brinen, J. Clardy, M. R. Boyd, *Tetrahedron* 1991, 47, 4547; c) K. Siems, J. Jakupovic, V. Castro, L. Poveda, *Phytochemistry* 1993, 33, 1465; d) T. Morgenstern, M. Bittner, M. Silva, P. Aqueveque, J. Jakupovic, *Phytochemistry* 1996, 41, 1149.
- [13] R. Borgues-Argáez, L. Medina-Baizábal, F. Mayy-Pat, L. M. Peña-Rodríguez, Can. J. Chem. 1997, 75, 801.
- [14] a) J. Kitajima, T. Komori, T. Kawasaki, Chem. Pharm. Bull. 1982, 30, 3912; b) J. T. Etse, A. I. Gray, P. G. Waterman, J. Nat. Prod. 1987, 50, 979.
- [15] D. K. M. Duc, M. Fétizon, S. Lazare, P. K. Grant, J. Nicholls, H. T. L. Liau, M. J. Francis, J. Poisson, J.-M. Bernassau, N. F. Roque, P. M. Vovkulic, E. Wenkert, *Tetrahedron* 1981, 37, 2371.
- [16] M. Jaensch, J. Jakupovic, H. Sanchez, X. A. Dominguez, Phytochemistry 1990, 29, 3587.
- [17] P. Witz, H. Herrmann, J.-M. Lehn, G. Ourisson, Bull. Soc. Chim. Fr. 1963, 1101.

Received August 27, 2002